Sequencing of tsunami waves : why the first wave is not always the largest

نویسندگان

  • Emile A. Okal
  • Costas E. Synolakis
چکیده

S U M M A R Y This paper examines the factors contributing to the ‘sequencing’ of tsunami waves in the far field, that is, to the distribution of the maximum sea surface amplitude inside the dominant wave packet constituting the primary arrival at a distant harbour. Based on simple models of sources for which analytical solutions are available, we show that, as range is increased, the wave pattern evolves from a regime of maximum amplitude in the first oscillation to one of delayed maximum, where the largest amplitude takes place during a subsequent oscillation. In the case of the simple, instantaneous uplift of a circular disk at the surface of an ocean of constant depth, the critical distance for transition between those patterns scales as r3 0 /h 2 where r0 is the radius of the disk and h the depth of the ocean. This behaviour is explained from simple arguments based on a model where sequencing results from frequency dispersion in the primary wave packet, as the width of its spectrum around its dominant period T0 becomes dispersed in time in an amount comparable to T0, the latter being controlled by a combination of source size and ocean depth. The general concepts in this model are confirmed in the case of more realistic sources for tsunami excitation by a finite-time deformation of the ocean floor, as well as in real-life simulations of tsunamis excited by large subduction events, for which we find that the influence of fault width on the distribution of sequencing is more important than that of fault length. Finally, simulation of the major events of Chile (2010) and Japan (2011) at large arrays of virtual gauges in the Pacific Basin correctly predicts the majority of the sequencing patterns observed on DART buoys during these events. By providing insight into the evolution with time of wave amplitudes inside primary wave packets for far field tsunamis generated by large earthquakes, our results stress the importance, for civil defense authorities, of issuing warning and evacuation orders of sufficient duration to avoid the hazard inherent in premature calls for all-clear.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

استفاده از نرم‌افزار ComMIT در پهنه‌بندی خطر سونامی در سواحل جاسک

In the Tsunami of Dec. 26, 2004, although there was a large distance between the earthquake center of Indian Ocean and coastal cities of Iran, the Tsunami waves brought some damages in Chabahar coast. This means that if the earthquake center was closer to Iran, Iran’s coastal regions would have confronted serious danger... In the present study, we used ComMIT software (Community Model Int...

متن کامل

GPU-SPH simulation of Tsunami-like wave interaction with a seawall associated with underwater

Investigation of the waves generated by underwater disturbances gives precious insight into the effect of man-made underwater explosions as well as natural phenomena, such as underwater volcanoes or oceanic meteor impact. On the other hand, prediction of the effects of such waves on the coastal installations and structures is required for preparation worthwhile criteria for coastal engineers to...

متن کامل

ISPH Numerical Modeling of Nonlinear Wave Run-up on Steep Slopes

Non-breaking tsunami waves run-up on steep slopes can cause severe damages to coastal structures. The estimation of the wave run-up rate caused by tsunami waves are important to understand the performance and safety issues of the breakwater in practice. In this paper, an Incompressible Smoothed Particle Hydrodynamics method (ISPH) method was utilized for the 2DV numerical modeling of nonli...

متن کامل

Three Dimensional Numerical Simulation of Tsunami Generation and Propagation Due to Makran Subduction and run-up on Chabahar Bay and Makran Coasts

Makran subduction located at the northwest of the Indian Ocean nearby the southern coast of Iran and Pakistan. Makran subduction is the source of tsunamis that threaten southern coast of Iran. In this article, generation and propagation of 1945’s tsunami initiated by Makran subduction is simulated. For the three dimensional generation of the wave, advanced algorithm of Okada is adopted. The CFD...

متن کامل

Numerical Modeling of Tsunami Waves Associated With Worst Earthquake Scenarios of the Makran Subduction Zone in the Jask Port, Iran

The recent studies show that the past researches may have significantly underestimated earthquake and tsunami hazard in the Makran Subduction Zone (MSZ) and this region is potentially capable of producing major earthquakes. In this study, the worst case possible earthquake scenarios of the MSZ are simulated using fully nonlinear boussinesq model to investigate tsunami hazards on the Jask Port, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015